4 research outputs found

    On b-colorings and b-continuity of graphs

    Get PDF
    A b-coloring of G is a proper vertex coloring such that there is a vertex in each color class, which is adjacent to at least one vertex in every other color class. Such a vertex is called a color-dominating vertex. The b-chromatic number of G is the largest k such that there is a b-coloring of G by k colors. Moreover, if for every integer k, between chromatic number and b-chromatic number, there exists a b-coloring of G by k colors, then G is b-continuous. Determining the b-chromatic number of a graph G and the decision whether the given graph G is b-continuous or not is NP-hard. Therefore, it is interesting to find new results on b-colorings and b-continuity for special graphs. In this thesis, for several graph classes some exact values as well as bounds of the b-chromatic number were ascertained. Among all we considered graphs whose independence number, clique number, or minimum degree is close to its order as well as bipartite graphs. The investigation of bipartite graphs was based on considering of the so-called bicomplement which is used to determine the b-chromatic number of special bipartite graphs, in particular those whose bicomplement has a simple structure. Then we studied some graphs whose b-chromatic number is close to its t-degree. At last, the b-continuity of some graphs is studied, for example, for graphs whose b-chromatic number was already established in this thesis. In particular, we could prove that Halin graphs are b-continuous.:Contents 1 Introduction 2 Preliminaries 2.1 Basic terminology 2.2 Colorings of graphs 2.2.1 Vertex colorings 2.2.2 a-colorings 3 b-colorings 3.1 General bounds on the b-chromatic number 3.2 Exact values of the b-chromatic number for special graphs 3.2.1 Graphs with maximum degree at most 2 3.2.2 Graphs with independence number close to its order 3.2.3 Graphs with minimum degree close to its order 3.2.4 Graphs G with independence number plus clique number at most number of vertices 3.2.5 Further known results for special graphs 3.3 Bipartite graphs 3.3.1 General bounds on the b-chromatic number for bipartite graphs 3.3.2 The bicomplement 3.3.3 Bicomplements with simple structure 3.4 Graphs with b-chromatic number close to its t-degree 3.4.1 Regular graphs 3.4.2 Trees and Cacti 3.4.3 Halin graphs 4 b-continuity 4.1 b-spectrum of special graphs 4.2 b-continuous graph classes 4.2.1 Known b-continuous graph classes 4.2.2 Halin graphs 4.3 Further graph properties concerning b-colorings 4.3.1 b-monotonicity 4.3.2 b-perfectness 5 Conclusion Bibliograph

    On b-colorings and b-continuity of graphs

    Get PDF
    A b-coloring of G is a proper vertex coloring such that there is a vertex in each color class, which is adjacent to at least one vertex in every other color class. Such a vertex is called a color-dominating vertex. The b-chromatic number of G is the largest k such that there is a b-coloring of G by k colors. Moreover, if for every integer k, between chromatic number and b-chromatic number, there exists a b-coloring of G by k colors, then G is b-continuous. Determining the b-chromatic number of a graph G and the decision whether the given graph G is b-continuous or not is NP-hard. Therefore, it is interesting to find new results on b-colorings and b-continuity for special graphs. In this thesis, for several graph classes some exact values as well as bounds of the b-chromatic number were ascertained. Among all we considered graphs whose independence number, clique number, or minimum degree is close to its order as well as bipartite graphs. The investigation of bipartite graphs was based on considering of the so-called bicomplement which is used to determine the b-chromatic number of special bipartite graphs, in particular those whose bicomplement has a simple structure. Then we studied some graphs whose b-chromatic number is close to its t-degree. At last, the b-continuity of some graphs is studied, for example, for graphs whose b-chromatic number was already established in this thesis. In particular, we could prove that Halin graphs are b-continuous.:Contents 1 Introduction 2 Preliminaries 2.1 Basic terminology 2.2 Colorings of graphs 2.2.1 Vertex colorings 2.2.2 a-colorings 3 b-colorings 3.1 General bounds on the b-chromatic number 3.2 Exact values of the b-chromatic number for special graphs 3.2.1 Graphs with maximum degree at most 2 3.2.2 Graphs with independence number close to its order 3.2.3 Graphs with minimum degree close to its order 3.2.4 Graphs G with independence number plus clique number at most number of vertices 3.2.5 Further known results for special graphs 3.3 Bipartite graphs 3.3.1 General bounds on the b-chromatic number for bipartite graphs 3.3.2 The bicomplement 3.3.3 Bicomplements with simple structure 3.4 Graphs with b-chromatic number close to its t-degree 3.4.1 Regular graphs 3.4.2 Trees and Cacti 3.4.3 Halin graphs 4 b-continuity 4.1 b-spectrum of special graphs 4.2 b-continuous graph classes 4.2.1 Known b-continuous graph classes 4.2.2 Halin graphs 4.3 Further graph properties concerning b-colorings 4.3.1 b-monotonicity 4.3.2 b-perfectness 5 Conclusion Bibliograph

    On b-colorings and b-continuity of graphs

    No full text
    A b-coloring of G is a proper vertex coloring such that there is a vertex in each color class, which is adjacent to at least one vertex in every other color class. Such a vertex is called a color-dominating vertex. The b-chromatic number of G is the largest k such that there is a b-coloring of G by k colors. Moreover, if for every integer k, between chromatic number and b-chromatic number, there exists a b-coloring of G by k colors, then G is b-continuous. Determining the b-chromatic number of a graph G and the decision whether the given graph G is b-continuous or not is NP-hard. Therefore, it is interesting to find new results on b-colorings and b-continuity for special graphs. In this thesis, for several graph classes some exact values as well as bounds of the b-chromatic number were ascertained. Among all we considered graphs whose independence number, clique number, or minimum degree is close to its order as well as bipartite graphs. The investigation of bipartite graphs was based on considering of the so-called bicomplement which is used to determine the b-chromatic number of special bipartite graphs, in particular those whose bicomplement has a simple structure. Then we studied some graphs whose b-chromatic number is close to its t-degree. At last, the b-continuity of some graphs is studied, for example, for graphs whose b-chromatic number was already established in this thesis. In particular, we could prove that Halin graphs are b-continuous.:Contents 1 Introduction 2 Preliminaries 2.1 Basic terminology 2.2 Colorings of graphs 2.2.1 Vertex colorings 2.2.2 a-colorings 3 b-colorings 3.1 General bounds on the b-chromatic number 3.2 Exact values of the b-chromatic number for special graphs 3.2.1 Graphs with maximum degree at most 2 3.2.2 Graphs with independence number close to its order 3.2.3 Graphs with minimum degree close to its order 3.2.4 Graphs G with independence number plus clique number at most number of vertices 3.2.5 Further known results for special graphs 3.3 Bipartite graphs 3.3.1 General bounds on the b-chromatic number for bipartite graphs 3.3.2 The bicomplement 3.3.3 Bicomplements with simple structure 3.4 Graphs with b-chromatic number close to its t-degree 3.4.1 Regular graphs 3.4.2 Trees and Cacti 3.4.3 Halin graphs 4 b-continuity 4.1 b-spectrum of special graphs 4.2 b-continuous graph classes 4.2.1 Known b-continuous graph classes 4.2.2 Halin graphs 4.3 Further graph properties concerning b-colorings 4.3.1 b-monotonicity 4.3.2 b-perfectness 5 Conclusion Bibliograph

    Upper bounds on the b-chromatic number and results for restricted graph classes

    No full text
    A b-coloring of a graph G by k colors is a proper vertex coloring such that every color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number χb(G)χ_b(G) is the maximum integer k for which G has a b-coloring by k colors. Moreover, the graph G is called b-continuous if G admits a b-coloring by k colors for all k satisfying χ(G)≤k≤χb(G)χ(G) ≤ k ≤ χ_b(G). In this paper, we establish four general upper bounds on χb(G)χ_b(G). We present results on the b-chromatic number and the b-continuity problem for special graphs, in particular for disconnected graphs and graphs with independence number 2. Moreover we determine χb(G)χ_b(G) for graphs G with minimum degree δ(G) ≥ |V(G)|-3, graphs G with clique number ω(G) ≥ |V(G)|-3, and graphs G with independence number α(G) ≥ |V(G)|-2. We also prove that these graphs are b-continuous
    corecore